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A combined first Remes differential-correction algorithm for uniform generalized
rational approximation with restricted range constraints is presented. This
algorithm can be applied when the data sets are too large to allow for the direct use
of differential correction and when the second Remes algorithm does not apply
because of the lack of an alternating theory. Under the assumption that differential
correction produces a good (though not necessarily best) approximation on each
(small) subset to which it is applied, it is proven that the algorithm terminates in a
finite number of steps at a good approximation on the entire data set. This is
established even though, unlike the standard first Remes, the algorithm sometimes
discards points in passing from one subset to the next. This theory also allows for
the set to be infinite. Also, a discretization theorem is presented and the algorithm
is illustrated with a numerical example.

1. INTRODUCTION

The differential-correction algorithm introduced by Cheney and Loeb [4],
shown to possess desirable global convergence properties by Barrodaie et al.
[1], and touted as the method of choice by Lee and Roberts [14], enjoys
widespread use today. This algorithm uses a linear programming approach
to calculate a best uniform rational fit to given values on a finite set. Various
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codings of this algorithm are available [2,7,8] and, recently, a more robust
version [13] has been given that allows for the inclusion of a multiplicative
weight function and restrictions on the values of the approximating functions
(i.e., restricted range constraints). The weight function and restricted-range
features are useful, for example, when one wishes to approximate the
magnitude squared response of a digital filter (see [5, 9, 15, 16]). The code
in [13] also contains subroutines for combining differential correction with
the second algorithm of Remes. This combination has proved quite effective
in situations where it can be applied (primarily ordinary rational approx
imation of functions of one variable (see [10, 11, 13])). In the present paper,
the algorithm of [13] is combined with an adaptive exchange procedure to
extend the domain of application of the differential-correction code to very
large (possibly infinite) data sets. This exchange procedure, which is similar
to the first algorithm of Remes but allows points to be dropped sometimes
and does not always require bringing in the point of maximum error, allows
for savings in storage and time requirements. (Dunham [6] has considered
rational approximation using a more standard version of the Remes
algorithm.) These improvements are due to the fact that the major cost of the
differential-correction algorithm in terms of storage and speed is in its linear
programming subroutine with these costs increasing rapidly with the size of
the data set. Also, this particular subroutine is that part of the procedure
where failure, though infrequent, most often occurs. Since our adaptive
strategy uses the differential-correction algorithm on (small) subsets of the
full data set, the time needed for this subroutine to run is decreased and its
chances of a successful run are improved. More importantly, it allows for the
solution of problems which are even too large for differential correction
alone to be applied; for example, if one wished to ue straight differential
correction on a grid formed by subdividing [0, 1] X [0, 1] X [0, 1] with
spacing 0.01 in each direction, one would have to solve a sequence of
nonsparse linear programming problems with more than 2,000,000
constraints!

In what follows, we shall describe our adaptive application of the
differential-correction algorithm and prove the convergence of this procedure.
The convergence proof is somewhat unusual in that we show that if, at each
step of the algorithm, an acceptable approximation is found that comes
within some fxed distance of being best on its particular subset of the data,
then the algorithm will converge in a finite number of steps to an approx
imation which comes within some fixed tolerance of being best for the full
data set. This sort of a convergence result is intuitively appealing since, in
practice, the differential-correction algorithm will only calculate a rational
approximation which has error of approximation close to the minimum error
norm.
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2. NOTATION AND DESCRIPTION OF THE ALGORITHM

Let X be a finite set of points in IRk and let!: X -t IR be a given real-valued
function. Thus, if we are given a data set {(Xi' Y/)}~ I with x/ E IR k and
Y/ E IR for all i, we set X = {xdf=1 and define!: X -t IR by!(x/) = y/ for all i.
Furthermore, let G, L, and U be fixed subsets of X with X = G U L U U, let
W: X -t IR be a given positive real-valued (multiplicative weight) function
and let I: L -t IR and u: U -t IR be given real-valued functions satisfying
l(x) <u(x) for all x E L n U. Finally, let g = (¢I ,..., ¢n) and
.2 = ('1'1"'" 'I'm) be two finite-dimensional linear subspaces (dimensions n
and m, respectively) of real-valued functions defined on X. Then the class of
generalized rational functions on X with respect to g and .2 is defined to be

!Jl = )R = P/Q: P = /tl p/¢/, Q = I~I ql '1'1' Q(x) ~ Yf for all x E Xand

Iq I I~ 1 for all i with equality holding at least once ( .

Here Yf is a small positive number (Yf = to-II in our code on a CYBER 172,
which has roughly 15 digits of accuracy in single precision). We use the
denominator restriction Q~ Yf instead of the usual weaker restriction Q > 0
for several reasons. First, rational approximations with very' small
denominators tend not to be useful in applications. Second, imposing the
condition Q~ Yf on the small subsets of X on which the differential
correction algorithm is applied does not require much extra computing time
and decreases the possibility of failure; it turns out that requiring this
condition on the small subsets plus some mild hypotheses guarantees that the
condition will be satisfied on all of X when our algorithm terminates.
Finally, this condition is needed to prove our convergence and discretization
results. In most examples, if Yf is small enough, the constraint Q~ Yf will
never actually come into play. Hence, our algorithm could in fact be
implemented without this condition. The best uniform restricted range
generalized rational approximation problem is to determine

p == inf {max IW(x)(f(x) - R(x))l: R E!Jl, R(x) ~ l(x), Vx ELand
xeG

R(x) ~ u(x), Vx E U}.

In what follows, we assume that there exists an R E !Jl satisfying R(x) ~ l(x)
Vx ELand R(x) ~ u(x) Vx E U.

In order to describe our algorithm, we need to extend the above notation
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to subsets of X. Thus, let X k be a subset of X and set Gk= X kfl G,
Lk=XkflL, and Uk=Xkfl U. Further, set

!iRk = lR=p/Q:P= t/t't,Q= t~1 qtl/lt,Q(x)~nforallxEXk

and Iqt I~ 1 for all i with equality holding at least onceI'
and

Pk =inf {max IW(x)(f(x) - R(x))I: R E !iRk' R(x) ~ l(x), Vx E L k
xeGk

and R(x) ~ u(x), Vx E Uk!.

Our method of handling constraints is to include them in the error function
(a similar strategy is used in [17]). In addition, points where the
denominator is very small in absolute value or negative are handled by
assigning to them a large error. To be precise, let x be an arbitrary point in
X and define the error ek(x) to be (A k+ 1) 106 if Qk (x) < ". For Qk(X) ~ "
define

e~(x) = W(x)(f(x) - Rk(x)), xEG,

=0, xeG;

e; = l(x) +Ak - Rk(x), xEL,

=0, xeL;

ef(x) = u(x) - Ak - Rk(x), xEU,

=0, xeu.

Finally, take ek(x) to be er(x), et(x) or ef(x), or ef(x) according to if
lef(x)l, et(x), or -ef(x) is largest, with the first chosen in case of a tie.
Observe that an error eix) arising from a constraint is greater than Ak in
absolute value iff the constraint is violated; observe also that ek(x) could
depend discontinuously on Rix), but if Rk(x) is a point where such a
discontinuity occurs and f(x) does not itself violate a constraint, then
lek(x)1 <Ak. Such points will have no effect on our algorithm. Finally, we set
Ek(x) = lek(x)l, and define the set of "extreme points" on X k by TiR k) =
{x E Xk: Ek(x) ~ Ak - TOL}, where TOL is a small positive number
(TOL = 10- 8 in our code).
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We can now describe the algorithm. Initially, let Xo be a subset of X
containing at least m +n points. Apply the differential-correction algorithm
[13] to compute Ro E .9!0 that satisfies

Po -15 1 <; Ao= mx IW(x)(f(x) - Ro(x»1 <; Po + 15,
xeGo

Ro(x)~I(x)-l5l' VxEL o' Ro(x)<;u(x) +151 , VxEUo,

where 15 and 15 1 are small positive constants. Theoretically, the algorithm in
[13] will produce an approximation R 0 for which 15I = 0, but round-off error
may allow a small violation of the constraints, which in turn may allow A0

to be slightly smaller than Po' On the other hand, Ao is normally larger than
Po even without round-off error because the differential-correction algorithm
usually must be terminated before a best approximation is found, even if one
exists. Thus 15 and 15 1 are measures of how far Ro can deviate from being best
onXo'

The next step is to construct a set A 0 S; X which contains at least one
x E X with Eo(x) >Ao+P (p = 10- 11 in our code); if no such x exists, the
algorithm is terminated and Ro is accepted as the "best" approximation on
X. The exact choice of Ao does not affect the proof of convergence but does
affect the convergence rate; the procedure is to search for relative extrema of
Eo(x) in X by "walking uphill" from each point of To(R o) in turn. This
procedure requires that X be a cross product of finite sets of real numbers.
(As we show below, the more general case of scattered data can be reduced
to this special case quite easily.) To walk from a point X o E To(R o)' we
examine all neighbors of Xo (which are defined as points whose
corresponding indices differ from those of Xo by at most one) to find a
"feasible" direction, that is, we seek a point XI where eo(x l ) eo(xo) > 0,
Eo(x l ) >Eo(xo)' and Eo(x l ) is maximized. If such a point is found, the walk
continues in this direction as long as eo(x) does not change sign and Eo(x)
increases. When a point is reached that prev.ents further such progress in this
direction, a new feasible direction is sought by examining all neighbors of
this last point. Eventually, this process terminates at a relative extremum of
eo(x). If for at least one such relative extremum we have Eo(x) >Ao +p,
define A 0 to be the set of all these relative extrema, together with up to 2k
other points turned up in the searching where Eo(x) is largest. (We, however,
exclude any points where Eo(x) <Ao·TOL). If no extremum satisfies
Eo(x) >Ao +P, a two-stage scan is performed on all points of X (a coarse
scan followed by a scan of the remaining points). If no x is found with
Eo(x) >Ao +P, the algorithm is terminated. If such an x is found, we
reconstruct A 0 by walking uphill from the single point x.

Assuming the algorithm does not terminate, define XI = To(Ro)UA o'
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Differential correction is then used to compute an approximation R 1 E ~I

satisfying

Weare now ready to describe the general exchange procedure of the
algorithm. Suppose, for k ~ 2, that sets X k _ 2 , X k _ 1 have been found with
corresponding rational approximations R k - 2 E ~k-2 and R k _ 1 E ~k-I and
with computed errors Ll k _ 2 and Ll k _ I' respectively. We also assume .1 k _ 3 has
been computed from R k _ 3 on X k _ 3 unless k = 2, in which case we set
.1_ 1 ::::: O. Then the set 8 k _ 1 is found where

L1 k _ 1 ~ max(L1 k _ 2 , L1 k - 3 ) +fl,
otherwise.

The set A k _ 1 is constructed in the same way as A 0 was, and if the algorithm
does not terminate we define

X k = 8 k _ 1 UA k _ l ,

= 8 k _ 1 UA k _ 1 UXk _ 2 ,

Ll k _ 1 ~L1k_2'

otherwise.

Intuitively, we allow ourselves to drop the nonextreme points from X k _ 1 if
Ll k _ 1 has increased significantly over both .1 k _ 2 and .1 k _ 3' while we put in
the points from X k _ 2 if Ll k _ 1 is actually smaller than L1 k - 2 • We then continue
in this fashion. In the next section we shall show that under certain mild
assumptions the algorithm must eventually terminate.

In practice, we have found time is saved by first computing a nested
sequence of subsets of X by essentially removing at each stage alternate
points in each direction (with boundary points of X immune to removal); the
smallest subset containing at least m +n points is taken to be X o' The
algorithm as described above is then run to get an approximation on the next
larger subset (which is playing the role of X). The final X j becomes the X o
for the net larger subset, and so forth until an approximation has been
computed on X. Our code does this automatically. For example, if m + n = 5
and X is a 5 X 201 grid, the sequence of subsets has dimensions 2 X 3 -+

2 X 5 -+ 2 X 8 -+ 2 X 14 -+ 2 X 26 -+ 2 X 51 -+ 3 X 10I -+ 5 X 201.
If X is not a cross product of finite sets of real numbers (i.e., we have

scattered data), we put k-dimensional boxes about the points of X with at
most one point per box, then treat the boxes like points (the main algorithm
will ignore empty boxes). The boxing procedure involves initially placing
borders between each two adjacent points in each direction, then successively
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removing borders (in increasing order of the directional separation distance
between points) whenever this can be done without putting two points in the
same box. The idea is that, as far as possible, points which are close together
in some direction should be on the same level in that direction. As an
example, if X = {(0.9, 1.1), (0,0.8), (1.1,0.7), (1.9,0), (0.4, 1.7)}, then the
result will be two rows of three boxes each. If the boxes are numbered from
left to right and bottom to top, the first point listed above will be in box 5,
the second point will be in box 1, the third point will be in box 2, the fourth
point will be in box 3, the fifth point will be in box 4, and box 6 will be
empty.

3. CONVERGENCE AND RELATED RESULTS

In this section, convergence results are developed for the algorithm defined
above. In addition, some discretization-type results are noted. Because of the
different exchange procedures employed, the following notation and lemma
are needed.

The notation xklxk+1 shall mean that L1 k >max(L1k_1'L1k_2)+P has
occurred; that is, the nonextreme points of X k have been discarded. Also, the
notation X k~ X k+ I means that L1 k~ max(L1k_l' L1 k_2) +Phas occurred; note
that X k ~ X k + I in this case.

LEMMA 1. Suppose e = P- ~ - ~l >0 and let 3 ~ k 1 < k 2 ••• < k n be an
increasing sequence ofpositive integers for which

Then Pkn+l ~ max(Pkl_2,Pk,_3) +ne.

Proof. The proof is by induction. Suppose n = 1 so that
xk,-llxk,~Xk,+l' We know then that L1 kl - 1 >max(L1k,_2,L1k,_3) +P as
Xk,_l 1X k" Now, if L1 kl < L1 kl - 1, then Xk,-l ~ X k,+ I by construction, so that

Pk,+ I ~ Pk,-l ~ L1 kl _1 - ~ > max(L1 k ,_2' L1 k,_3) +P- ~

~ max(Pk l _2,Pkl_3) + e.

On the other hand, if L1 k,~ L1 k,-l' then since X k,~ Xk,+ I as X k,~ X k,+ l'

we have that

Pk,+ 1 ~ Pkl ~ L1 kl - a~ L1 k,-1 - a> max(L1 k,_2,L1k,_3) +P- a
~ max(Pk,_2, Pk l_3) +e.
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Now suppose the lemma is true for n ~ I, and suppose

Xk,_1 1X k, ..... · ....... x k2 - l l X k2 ..... · ....... x 1X ..... xk,+,-I k'+ 1 kl+1 + I'

The proof involves three cases.

Case 1. k2= k l + 1, so that Xk,_1 1X k2 - 11X k2 . By the induction
assumption, we have that Pkl+l+ 1 ~ max(Pk2- 2' Pk2-J) + Ie so that

PkI+I+1 ~Pk2-2+ Ie =Pk,-I + Ie ~Ak,-l - &+ Ie

> max(Ll kl _ 2 , Ak,-3) +f3 - &+ Ie

~ max(Pk,_2,Pk,_3) + (l + 1)E.

Case 2. k2=kl +2 so that xk,-llxk, ..... xk2-llxk2. Then by the
induction assumption, we have Pkl+' + 1 ~ max(Pk2- 2, Pk2-3) + Ie so that

Pkl+I+1 ~Pk2-3 + Ie =Pk,-I + Ie ~Ak,_1 - &+ Ie

> max(A k, _ 2 , Ak, - 3) + f3 - &+ Ie

~max(Pk,_2,Pk,_3)+ (/+ 1)e.

Case 3. k2>kl +2, so that xk,_llxk, ..... xk,+I ..... · ....... xk2-llxk2.
Then, by the induction assumption once again, we have that Pkl+,+1 ~
max(Pk2_ 2,Pk2_ J)+le. In addition, since X k,+IS;Xk2 - 2 implies that
Pk2-2 ~Pk,+1' we have that

Pk,+I+1 ~Pk2-2 + Ie ~Pk,+1 + Ie ~ max(Pk,_2,Pk,_3) + e + le

= max(Pk,_2' Pk,-3) + (l + 1) e,

where the last inequality is simply the result of the n = 1 case. The three
cases are thus established and the lemma is proved. I

THEOREM 2. Assume that X is finite and that each application of the
differential-correction algorithm produces an approximation Rk in .9lk that
satisfies

Pk - &1 ~ Ak= max IW(x)(f(x) - Rk(x»! ~ Pk +0,
xeGk

Rk(x) ~ I(x) - &1' Vx ELk' Rk(x) ~ u(x) + &1' Vx E Uk'

where e = f3 - () - {)I > 0 and f3 < 106
• Then the algorithm terminates at an

R * E.91 satisfying
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L1 == max IW(x)(f(x) - R*(x»1 ~ P + fl + ~,
xeG

R *(x) ~ l(x) - fl, Vx E L, R*(x)~u(x)+fl, VxEU.

Proof. First observe that Pk ~ P for all k and P finite (since we have
assumed the existence of an R E.9/ satisfying the constraints) implies that
an exchange of the form X k 1X k + 1 can occur only a finite number of times
by Lemma 1. Thus, once the algorithm is past the last index at which this
sort of exchange occurs, then we must have X k <;; X k + 1 if the algorithm does
not terminate at stage k. This containment must be proper, since by
construction there exists an x E Ak<;; X k+ 1 with Ek(x) > L1 k+fl > L1k+~p

and this together with Qk ~ 11 on Xk implies x ~ X k. Since X is finite, it
follows that the algorithm will eventually terminate in a finite number of
steps. If XN is the final subset of the algorithm and RN is the approximation
computed on it, then we first observe that QN ~ 11 on X so that RNE.9/. If
not, then for some x E X we have QN(X) < 11, but then EN(x) = (L1N+ 1) 106

by construction so (L1 N + 1) 10 6 ~ L1N +fl (else the algorithm would not have
terminated). Thus, L1N106 + 106 ~ L1N+fl < L1N+ 106

, so L1N(l06 - 1) < 0,
which is a contradiction. We also have

max IW(x)(f(x) - RN(x»1 ~ max EN(x) ~ L1N+fl
xeX xeX

~ PN + ~ +fl ~ P+fl + ~.

Finally, if for some x E X we had RN(x) < l(x) - fl or RN(x) > u(x) +fl, then
by definition EN(X) >L1 N +fl, which contradicts the second inequality
above. I

The assumption that X be finite can be weakened to assume more
generally that X and each X k be only compact, although to implement the
algorithm one would want each X k to be finite. To insure termination of the
algorithm and leave some room for errors due to incomplete searching on an
infinite set, we need a stronger restriction for Qk on X k. We thus define .9/*,
p*,.9/:, and P: by replacing 11 by 411 in the definitions of .9/, P, .9/k' and Pk'
respectively. We also assume that an element of .9/* satisfying the
constraints exists, and define E:(x) by replacing 11 by 211 in the definition of
Ek(X). As before, we assume that A k is constructed to contain a point x,
where E:(x) > L1k+ fl, and the algorithm is terminated if no such x is found.
Note that an alternate search procedure for actually constructing A k must be
divised. For example, a procedure involving Newton's method is suggested in
[18] for linear (i.e., m = 1) approximation on a rectangle using a more
standard Remes first algorithm where points are never dropped. Assuming
we have some kind of search procedure, we can prove the following theorem,
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which takes into account the fact that the search procedure may be unable to
find a point where Et(x) > Ak+ fl even if one exists.

THEOREM 3. Suppose that X and each Xk are compact, and at stage k
an approximation Rk E .91t is produced that satisfies

where /; = fl - °-01 > O. Also assume that J, W, ~p ... , ~n' 'lip... , '11m , I and u
are continuous and bounded on their domains of definition with W bounded
away from zero on G, and suppose that either L U Ur;;;. G or {~1' ..., ~n} is
linearly independent on G n Xk for all but a finite number of indices k.
Finally, assume that if at stage k there exists x E X with Ek(x) >Ak+ fl + y,
where Y is a positive constant with fl +Y < 106

, then the search procedure
will find at least one x E X with Et(x) >Ak+ fl, so the algorithm will not
terminate at stage k. Then the algorithm will eventually terminate at an
R * E .91 satisfying

A == max IW(x)(f(x) - R *(x))1 ~ p* + fl +Y+0,
xeG

R *(x);;: l(x) - fl - y, 'Ix E L, R*(x)~u(x)+fl+y, VxEU.

Proof We shall show only that the algorithm must terminate in a finite
number of steps. Once this has been done, the remaining conclusions follow
by the same arguments used in Theorem 2. Thus, assume the algorithm does
not terminate in a finite number of steps. Lemma 1 applies in this situation
to show that there exists kL such that k;;: kL implies that only X k ~ X k + I

(and thus X k r;;;. X k +1) is possible. We now show that there exists k D ;;: k L

such that if k ;;: kD , then Qk(X) ;;: 2" for all x E X = closure(U1=k
D

Xj) r;;;. X.
Indeeg, if this is false, then there is a subsequence {QI4} and a sequence

{xl'} r;;;.X = closure(U}':'k
L

X k) such t!!at QI4(X14 ) <1"; going to furth~ subse
quences we may assume xl' ~ x E X and Q

14
~ Q (uniformly on X). Thus

Q(x) ~ 2". Now choose a sequence {x~} with x~ E XI' and x~ ~ x; we have
QI4(x~);;: 4" and Qix~)~ Q(x), so Q(x);;: 4", which is a contradiction.

We next wish to show that the numerator coefficients of R k can be chosen
to be bounded as k ~ ex:>. This follows from standard arguments under the
hypothesis that there is some kN ;;: kD such that {~1'..., ~n} is linearly
independent on G nXk for k;;: kN • If, on the other hand, we assume that
L U U r;;;. G, then Xk = Gk for all k, and the nestedness of {Xk} for k;;: kD

implies the existence of some kN ~ kD and a fixed subset of {?l ,..., ~n} which
is a maximal linearly independent subset on each X k with k ~ k N • For each
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corresponding R k , one can rewrite the numerator in terms of the basis
functions in this subset, with zero coefficients for the other basis functions.
Then standard arguments again imply the boundedness of the coefficients.
From this, further standard arguments (using a subsequence of {Rd is
necessary) show that R k -+ some if (uniformly on X), implying the existence
of a kp ~ kN such that if i,j ~ kp , then maxxExlRlx) - Rj(x)1 ~ (fJ - &1)/2
and maxxExl W(x)(Rt(x) - Rix»1 ~ (ft - &1)/2.

Now define Ek = SUPXEXkE:(~. By the definition of E:(zE) and our
assumptions on Rk we have.1k~ Ek~.1k +&1. Further let ak= Ek - p:. We
then have -&1 ~ ak ~ &+&1. For each k, let x k be a point brought into X k +1
which satisfies E:(xk) > L1k+fl. Then for k ~ kp we have Qk(Xk) ~ 211, and

Ek+1~ max(le?+ l(xk)l, ef+ 1(xk), -ef+ 1(xk»
~ max(le?(xk)l, ef(xk), -ef(xk»-!(ft - &1)

=E:(xk ) -!(ft - &1) > .1 k +fl- !(ft - &1)

~Ek +fl- &1 -!(fJ - &1) = P: + a k +!(fJ - &\).

Thus, we have

Arguing similarly, we have

and by induction, for any n we have

implying that

This, in turn, implies that the algorithm must terminate in a finite number of
steps since P: ~ p* for all p. The theorem is proved. I

We have assumed that {¢I ,..., ¢n} is linearly independent on G n X k for all
but a finite number of k's if L u U r1 G. This will normally be satisfied in
practice. Even in cases where it is not, one could obtain it by including some
fixed subset of G on which {¢I ,..., ¢n} is independent in each A k •

If one wishes to compute a good approximation on a compact but infinite
set X, instead of attempting to do this directly, one frequently chooses a
(large) finite subset Y and computes an approximation on Y, hoping that a
good approximation on Y will not be too bad on X - Y. The discretization
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theorem below, which is an extension of two theorems in [4, pp.84-88],
indicates the reasonableness of this approach. We shall need the following
notation. Suppose B ~ A ~ X and g is a function defined on A. Then, for
d(x,y) = Euclidean distance between x and y, Vx, y E X, we define

IB IA = density of B in A = 0,

=+00,

= sup inf d(x, y),
xeA yeB

II gilA sup Ig(x)l,
xeA

A=0,

A *0 and B=0,

A *0 and B*0,

w = joint modulus of continuity off, I, and u; that is, for 15 >0,

w(15) = max( sup
x.yeG

d(x.y)".5

If(x)-f(y)l, sup I/(x)-/(y)l,
x.yeL

d(x.y)" .5

sup lu(x)-u(y)l)
x.yeU

d(x.y)".5

(where a supremum over the empty set is 0),

n = joint modulus of continuity of ~1'... , ~n' lfIl"'" lfIm'

and

.!£y = jR = P/Q: P = tl PI~I' Q = j~1 qjlfll' Q(x) ;;;>-1'/, Vx E Y,

IqII ~ 1 for all i with equality holding at least once,

R(x);;;>-/(x), VxE YnL,R(x)~u(x),VxE ynu!.

For any Y ~ X, we say ifE .!£y is a best approximation to f on Y if
IIJ- ifliGny ~ IIf- R IIGny, VR E .!£Y·

THEOREM 4. Suppose f, W, ~I , ••• , ~n' lfIl ,••• , lfIm , I, u are continuous and
bounded on their domains of definition with W bounded away from zero on
G and {'I ,..., ~n} linearly independent on G. Suppose R * E.!£x is a best
approximation to f on X, 15 is a positive number, Y is a subset of X with
IG n Y!G <0, IL n YIL <0, IUn Ylu <0, and ifE.!£y is a best approx
imation to f on Y. Then
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(i) for b sufficiently small, there exists a constant y independent of
Y, R *, and R such that

max {/I f - Rllo -Ilf- R *110' sup (l(x) - R(x)), sup (R(x) - u(x)),
xeL xeU

sup {(" - Q(x))} ~ w(b) + y.Q(b)};
xeX

(ii) IfR * is unique, then R converges uniformly to R * on X as b ..... O.

Because it is straightforward, we simply sketch the proof

Proof One first shows by subsequence arguments that Q~ ,,/2 on X if b
is sufficiently small, and the numerator coefficients of R are bounded
independently of Y, R *, and R if b is sufficiently small. The theorem can
then be proved using arguments similar to those in [4,pp. 85-88]; in part (ii)
we use the quantity m(e) = infReRy,IIR-R'Ilt-:>e [llf-Rllx-llf-R*llx] which
by a subsequence argument can be shown to be positive for b, 6 sufficiently
small.

It is possible to have 1/ f - Rlla < II f - R *Iia since R need not satisfy the
constraints on X - Y. It can be shown by a subsequence argument that
II f - Rlla ..... I/f - R *Iia as b ..... 0, but there are examples for which
Ilf - R *I/a -Ilf- RI/a >w(b) + y.Q(b) for any constant y, for b sufficiently
small.

We observe that IYlx < b does not imply the density hypotheses of
Theorem 4, and is not sufficient to get the conclusions. For example, if the
point (0,0) is not included in Y in the example presented later in this paper,
then Illf- Rllx - Ilf - R *Ilx I cannot be forced arbitrarily close to 0 by just
forcing IYlx arbitrarily close to zero. As a general rule, it is wise to include
any isolated points of G, Land U in Y.

4. AN EXAMPLE AND CONCLUSIONS

Consider the function f defined on [0, 1] X [0, 1] by

f(x,y) = 1;

= undefined;

0;

O~x~ 1, 0~y~-1.25x+ 1.25,

o~ x ~ I, -1.25x + 1.25 <y < -1.25x + 1.375,

o~ x ~ 1, -1.25x + 1.375 ~y ~ 1.

Suppose we would like to approximatefby a generalized rational function of
the form R(x,y) = (PI +P2X +P3 y)/(ql + q2 sin(x +y)), with the
requirements R(x,y) ~ 0 for y > -1.25x + 1.25 and R(O, 0) ~ 1. Further, we
set W(x,y) = 0.5, wheref(x,y) = 1 and W(x,y) = 1, wheref(x,y) = 0; thus
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we are willing to allow a larger error where [(x, y) = 1 in order to improve
the approximation where [(x, y) = O. Taking X = {(0.005i, O.Olj):
o~ i ~ 200, 0 ~j ~ 100} (i.e., a 101 X 201 subdivision) and running this
example on a CYBER 172 (roughly 15 digits of accuracy), we obtained
R(x,y) = 1.00000 - 0.55915x - 0.44085y)/(1.00000 + 0.24173 sin(x +y»
after 40.5 sec of execution time and 15 applications of differential correction,
with no X k having more than nine points. The error norm was Ll = 0.31746;
the extreme points and the weighted errors at them were (0,0) (O-hit upper
constraint), (0.28,0.9)(Ll), (0.24,0.95)(Ll), (0.2, 1)(Ll), (0.3, 1)(-Ll), (1, 1)(0
hit lower constraint). It was not necessary to insert extra constraints in the
differential-correction subroutines to force Qk ~ some 17 on X k, since each Qk
was actually greater than 0.84 throughout [0, 1) X [0, 1).

For comparison, we modified the program so that no points would be
dropped (i.e., Sk-I = X k _ 1 for all k); this time differential correction was
applied 12 times, with XII having 23 points and 43.0 sec were required.
Although the time difference was not great, we remark here that in some
problems this procedure could cost considerable time, or even cause failure
of the program due to storage problems when X k becomes too large.

To illustrate the remark following Theorem 4, we ran the program with the
point (0,0) (and its constraint) deleted; the results were R(x,y) = (1.49500
0.84554x - 0.64945y)/(0.90823 + 1.00000 sin(x +y» with error norm
J = 0.31621 and the extreme point at (0,0) replaced by one at (0.005,0)
with error -1. Eighteen applications of differential correction and 41.0 sec
were required.

Finally, in order to compare the algorithm with straight differential
correction on a set small enough for the latter to be applied, we use a 11 X 9
subdivision; our algorithm required 1.9 sec (with differential correction being
applied six times to grids with maximum size 10), while straight differential
correction required 3.3 sec. In both cases, we obtained R(x,y) = (1.00000
(155922x - 0.44078y)/(1.oo000 +0.24189 sin(x +y». The error norm was
J =0.31746 (actually, about 4 X 10- 7 smaller than Ll), a~d the extrel!!e
points w~e (O,O)(O-hit upper constraint), (0.3,0.875)(J), (0.2, 1)(J),
(0.3, 1)(-J), (1, 1)(O-hit lower constraint).

A second paper is being prepared with further examples and more
discussion of the code; a FORTRAN listing will also be included.
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